Department of Electronics \& Communication Engineering

Faculty of Engineering, Integral University, Lucknow
Quiz 2
Basic Electrical Engineering (IEN-101)
Faculty: Dr. Syed Hasan Saeed
Section: EC-1
Name \& Roll Number :
Date :
Problems: 10

1. The voltage across heater of resistance 5 ohms, when the current flowing through it is 46A will be
(a) 230 V
(b) 320 V
(c) 460 V
(d) 200 V
2. A potential difference of 12 V is applied to a $4.7 \mathrm{k} \Omega$ resistor. The circuit current will be
(a) 5.22 mA
(b) 2.55 mA
(c) 2.55 A
(d) 5.22 A
3. A current in a circuit is due to a potential difference of 20 V applied to a resistor of resistance 200 ohm. What resistance would permit the same current to flow if the supply voltage were 200 V ?
(a) 2Ω
(b) $0.2 \mathrm{k} \Omega$
(c) $2 \mathrm{k} \Omega$
(d) $0.22 \mathrm{k} \Omega$
4. A potential difference of 12 V is applied to a 7.5Ω resistor for a period of 10 sec . The electric charge transferred during this time
(a) 61 C
(b) 61.1 C
(c) 16 C
(d) 1.6 C
5. Four capacitors each of $20 \mu \mathrm{~F}$ are connected in parallel, the total capacitance is
(a) $80 \mu \mathrm{~F}$
(b) $5 \mu \mathrm{~F}$
(c) $16 \mu \mathrm{~F}$
(d) $61 \mu \mathrm{~F}$
6. Ten capacitors each of $10 \mu \mathrm{~F}$ are connected in series, the total capacitance is
(a) $100 \mu \mathrm{~F}$
(b) $1 \mu \mathrm{~F}$
(c) $0.1 \mu \mathrm{~F}$
(d) $0.001 \mu \mathrm{~F}$
7. One Farad is equal to
(a) 1Ω
(b) $1 \mathrm{~V} / \mathrm{C}$
(c) $1 \mathrm{C} / \mathrm{V}$
(d) $1 \Omega / \mathrm{sec}$
8. The unit of resistivity
(a) Ω
(b) Ω / m
(c) Ω / m^{2}
(d) $\Omega \mathrm{m}$
9. Two resistors connected in parallel across a battery of 1 V draw a current of 1 A . When one of the resistor is disconnected, the current drawn is 0.2 A . The resistance of the disconnected resistor is
(a) 1Ω
(b) 1.25Ω
(c) 5Ω
(d) 125Ω
10. Which of the following does not represent the unit of power?
(a) VI
(b) V / I
(c) $I^{2} R$
(d) $\mathrm{J} / \mathrm{sec}$
